
Building Blocks of Python
Programs

Comments

We want people to be able to read and understand
our programs. The # symbol introduces a
comment, which is a note for human readers of the
code. Comments are ignored by computers.
Anything to the right of a # symbol is part of the
comment and ignored.

You should get in the habit of putting a comment
at the top of every program saying at least
 a) Your name
 b) What the program does

Here is a nice format for this

gradebook.py
This simulates a digital gradebook
author: Bob Geitz
Last modified January 29, 2015

Variables

A variable is a name that represents something in
your program.

Variables start with a letter and consist of letters,
digits, and underscores. No spaces, periods,
hyphens, etc.

Here are some good variable names
 averageScore
 letterCount
 letter_count

Most programming languages require variables to
be declared, which requires saying what kind of
data the variable can hold. There are no variable
declarations in Python. You create a variable by
giving it a value, as in
 x = 5

Assignment statements give values to variables.
We use = for this. We can say

 x = 5
 x = 6

The first use of a variable creates it, so the line x=5
creates variable x and puts the value 5 into it. The
line x=6 changes the value stored in x to 6.

Don't confuse = (for assignments) with == (for
comparisons)

Here are 4 simple types of data:

• Integers: 2, -3, 0
• Floats: 3.14, -6.2, 5.0
• Strings: "Bob", "Oberlin College", ""
• Booleans: True, False

Integer data

• Read with eval(input(<prompt>))
 as in
 x = eval(input("Enter a number: "))

• Arithmetic operations +, *, -, /, //, %, **
• / is for floating point division: 7/2 is 3.5
• // is for integer division: 7/2 is 3
• ** is for exponentiation: 3**4 is 81
• % is the modulus (or remainder) operation

7 % 5 is 2

Note that % (the modulus or remainder operator)
is more useful than you might think:

• I usually pronounced a%b as "a mod b"
Some people say "a remainder b"

• b divides evenly into a if a%b is 0
• x is even if x%2 is 0; x is odd if x%2 is 1
• days d1 and d2 of a given month fall on the

same day of the week if d1%7 is the same as
d2%7.

The Arithmetic Rule for operators +, -, *
If a and b are both integers, then a op b is an
int.

If either a or b or both are floats, then a op b
is a float.

There isn't a lot to say about floats except that
they are there. Internally the integer 3 is stored in
a completely different way than the float 3.0. This
makes comparing floats and integers for equality
problematic.

You can convert an int x to a float with
 float(x)
as in
 float(3)
which gives you 3.0.

Strings
• Strings are delimited with either single

quotes: 'bob'
 or double quotes: "bob"
• read with input()
• if blah is a string that represents a valid

Python expression, then eval(blah) gets the
value of that expression:
• eval("4") is 4.

• The + operator between 2 strings
concatenates or pushes the strings
together.
"Marvin " + "Krislov" is "Marvin Krislov"

• The comparison operators <, <=, ==, >=,
 >, != compare strings in dictionary

order, only all of the capital letters
come before all of the lower-case
ones.

You can use indexes to get at the individual
characters (letters) of a string. We always start
indexing at 0.

Suppose s is the string "abcd". Then s[0] is "a",
s[1] is "b", and so forth. The number of characters
in string s is len(s). So the valid indexes of string s
are any integers between 0 and len(s)-1.

s[a, b] is the portion of string s starting at index a,
going up to but not including index b. So if s is
"Bob the Great", s[4:7] is "the". Similarly s[a:] is all
of s starting with index a, and s[;b] is the portion of
s up to but not including index b.

You can even use negative indexes: s[-1] is the last
character of string s. But I find it easy to get
confused with negative indexes so I tend to avoid
them.

Finally, if s is a string then s.upper() is s with its
lower-case letters converted to upper-case.
"23 skidoo".upper() is "23 SKIDOO".

There is a similar .lower() method that converts
upper-case letters to lower-case.

Booleans (named after George Boole, a British
logician)

There are two Boolean values: True and False.
Note the capitalization: true has no meaning in
Python, True does.

You can connect two Boolean expression with
and, or, not.

Here is an expression that says variable x has a
value between 1 and 10:

 if (x >= 1) and (x <= 10):
 blah blah blah

It is possible in Python to write this as
 1 <= x <= 10
but I have seen so many people do that incorrrectly
that I much prefer to write compound expressions
with explicit operators like and, or.

